Numerical spurious solutions in the effective mass approximation
نویسندگان
چکیده
We have characterized a class of spurious solutions that appears when using the finite difference method to solve the effective mass approximation equations. We find that the behavior of these solutions as predicted by our model shows excellent agreement with numerical results. Using this interpretation we find a set of analytical expressions for conditions that the Luttinger parameters must satisfy to avoid spurious solutions. Finally, we use these conditions to check commonly used sets of parameters for their potential for generating this class of spurious solutions. © 2003 American Institute of Physics. @DOI: 10.1063/1.1555833#
منابع مشابه
A family of positive nonstandard numerical methods with application to Black-Scholes equation
Nonstandard finite difference schemes for the Black-Scholes partial differential equation preserving the positivity property are proposed. Computationally simple schemes are derived by using a nonlocal approximation in the reaction term of the Black-Scholes equation. Unlike the standard methods, the solutions of new proposed schemes are positive and free of the spurious oscillations.
متن کاملSpurious solutions for the advection-diffusion equation using wide stencils for approximating the second derivative
A one dimensional steady-state advection-diffusion problem using summationby-parts operators has been investigated. For approximating the second derivative, a wide stencil has been used, which has spurious, oscillating, modes for all mesh-sizes. We show that the size of the spurious modes are equal to the size of the truncation error for a stable approximation. The theoretical results are verif...
متن کاملAnalytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate
The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملVerification and Validation of Common Derivative Terms Approximation in Meshfree Numerical Scheme
In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are assessed by a posteriori method, which shows that the approximations...
متن کامل